Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.

نویسندگان

  • Micaela Fornabaio
  • Francesca Spyrakis
  • Andrea Mozzarelli
  • Pietro Cozzini
  • Donald J Abraham
  • Glen E Kellogg
چکیده

Structural water molecules within protein active sites are relevant for ligand-protein recognition because they modify the active site geometry and contribute to binding affinity. In this work an analysis of the interactions between 23 ligands and dimeric HIV-1 protease is reported. The X-ray structures of these complexes show the presence of four types of structural water molecules: water 301 (on the symmetry axis), water 313, water 313bis, and peripheral waters. Except for water 301, these are generally complemented with a symmetry-related set. The GRID program was used both for checking water locations and for placing water molecules that appear to be missing from the complexes due to crystallographic uncertainty. Hydropathic analysis of the energetic contributions using HINT indicates a significant improvement of the correlation between HINT scores and the experimentally determined binding constants when the appropriate bridging water molecules are taken into account. In the absence of water r2 = 0.30 with a standard error of +/- 1.30 kcal mol(-1) and when the energetic contributions of the constrained waters are included r2 = 0.61 with a standard error of +/- 0.98 kcal mol(-1). HINT was shown to be able to map quantitatively the contribution of individual structural waters to binding energy. The order of relevance for the various types of water is water 301 > water 313 > water 313bis > peripheral waters. Thus, to obtain the most reliable free energy predictions, the contributions of structural water molecules should be included. However, care must be taken to include the effects of water molecules that add information value and not just noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free energy of ligand binding to protein: evaluation of the contribution of water molecules by computational methods.

One of the more challenging issues in medicinal chemistry is the computation of the free energy of ligand binding to macromolecular targets. This allows for the screening of libraries of chemicals for fast and inexpensive identification of lead compounds. Many attempts have been made and several algorithms have been developed for this purpose. Whereas enthalpic contributions are evaluated using...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water.

The prediction of the binding affinity between a protein and ligands is one of the most challenging issues for computational biochemistry and drug discovery. While the enthalpic contribution to binding is routinely available with molecular mechanics methods, the entropic contribution is more difficult to estimate. We describe and apply a relatively simple and intuitive calculation procedure for...

متن کامل

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.

Empirical free energy calculations of HIV-1 protease crystallographic complexes based on the developed knowledge-based ligand-protein interaction potentials have enabled a detailed thermodynamic analysis. Binding free energies are estimated within an empirical model that postulates that hydrophobic effect, mean field ligand-protein interaction potentials and conformational entropy changes are t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 47 18  شماره 

صفحات  -

تاریخ انتشار 2004